Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecol Evol ; 10(23): 13297-13311, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33304538

RESUMO

Recent methodological advances have led to a rapid expansion of evolutionary studies employing three-dimensional landmark-based geometric morphometrics (GM). GM methods generally enable researchers to capture and compare complex shape phenotypes, and to quantify their relationship to environmental gradients. However, some recent studies have shown that the common, inexpensive, and relatively rapid two-dimensional GM methods can distort important information and produce misleading results because they cannot capture variation in the depth (Z) dimension. We use micro-CT scanned threespine stickleback (Gasterosteus aculeatus Linnaeus, 1758) from six parapatric lake-stream populations on Vancouver Island, British Columbia, to test whether the loss of the depth dimension in 2D GM studies results in misleading interpretations of parallel evolution. Using joint locations described with 2D or 3D landmarks, we compare results from separate 2D and 3D shape spaces, from a combined 2D-3D shape space, and from estimates of biomechanical function. We show that, although shape is distorted enough in 2D projections to strongly influence the interpretation of morphological parallelism, estimates of biomechanical function are relatively robust to the loss of the Z dimension.

2.
J Hered ; 111(1): 43-56, 2020 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-31690947

RESUMO

The repeatability of adaptive radiation is expected to be scale-dependent, with determinism decreasing as greater spatial separation among "replicates" leads to their increased genetic and ecological independence. Threespine stickleback (Gasterosteus aculeatus) provide an opportunity to test whether this expectation holds for the early stages of adaptive radiation-their diversification in freshwater ecosystems has been replicated many times. To better understand the repeatability of that adaptive radiation, we examined the influence of geographic scale on levels of parallel evolution by quantifying phenotypic and genetic divergence between lake and stream stickleback pairs sampled at regional (Vancouver Island) and global (North America and Europe) scales. We measured phenotypes known to show lake-stream divergence and used reduced representation genome-wide sequencing to estimate genetic divergence. We assessed the scale dependence of parallel evolution by comparing effect sizes from multivariate models and also the direction and magnitude of lake-stream divergence vectors. At the phenotypic level, parallelism was greater at the regional than the global scale. At the genetic level, putative selected loci showed greater lake-stream parallelism at the regional than the global scale. Generally, the level of parallel evolution was low at both scales, except for some key univariate traits. Divergence vectors were often orthogonal, highlighting possible ecological and genetic constraints on parallel evolution at both scales. Overall, our results confirm that the repeatability of adaptive radiation decreases at increasing spatial scales. We suggest that greater environmental heterogeneity at larger scales imposes different selection regimes, thus generating lower repeatability of adaptive radiation at larger spatial scales.


Assuntos
Adaptação Biológica , Especiação Genética , Smegmamorpha/genética , Animais , Ecossistema , Feminino , Interação Gene-Ambiente , Lagos , Masculino , Modelos Genéticos , Fenótipo , Filogeografia , Rios , Seleção Genética , Smegmamorpha/fisiologia , Análise Espacial
3.
J Evol Biol ; 31(5): 735-752, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29532568

RESUMO

The evolutionary consequences of temporal variation in selection remain hotly debated. We explored these consequences by studying threespine stickleback in a set of bar-built estuaries along the central California coast. In most years, heavy rains induce water flow strong enough to break through isolating sand bars, connecting streams to the ocean. New sand bars typically re-form within a few weeks or months, thereby re-isolating populations within the estuaries. These breaching events cause severe and often extremely rapid changes in abiotic and biotic conditions, including shifts in predator abundance. We investigated whether this strong temporal environmental variation can maintain within-population variation while eroding adaptive divergence among populations that would be caused by spatial variation in selection. We used neutral genetic markers to explore population structure and then analysed how stickleback armor traits, the associated genes Eda and Pitx1 and elemental composition (%P) varies within and among populations. Despite strong gene flow, we detected evidence for divergence in stickleback defensive traits and Eda genotypes associated with predation regime. However, this among-population variation was lower than that observed among other stickleback populations exposed to divergent predator regimes. In addition, within-population variation was very high as compared to populations from environmentally stable locations. Elemental composition was strongly associated with armor traits, Eda genotype and the presence of predators, thus suggesting that spatiotemporal variation in armor traits generates corresponding variation in elemental phenotypes. We conclude that gene flow, and especially temporal environmental variation, can maintain high levels of within-population variation while reducing, but not eliminating, among-population variation driven by spatial environmental variation.


Assuntos
Adaptação Fisiológica , Meio Ambiente , Estuários , Smegmamorpha/fisiologia , Animais
4.
Nat Ecol Evol ; 1(6): 158, 2017 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-28812631

RESUMO

Parallel evolution of similar traits by independent populations in similar environments is considered strong evidence for adaptation by natural selection. Often, however, replicate populations in similar environments do not all evolve in the same way, thus deviating from any single, predominant outcome of evolution. This variation might arise from non-adaptive, population-specific effects of genetic drift, gene flow or limited genetic variation. Alternatively, these deviations from parallel evolution might also reflect predictable adaptation to cryptic environmental heterogeneity within discrete habitat categories. Here, we show that deviations from parallel evolution are the consequence of environmental variation within habitats combined with variation in gene flow. Threespine stickleback (Gasterosteus aculeatus) in adjoining lake and stream habitats (a lake-stream 'pair') diverge phenotypically, yet the direction and magnitude of this divergence is not always fully parallel among 16 replicate pairs. We found that the multivariate direction of lake-stream morphological divergence was less parallel between pairs whose environmental differences were less parallel. Thus, environmental heterogeneity among lake-stream pairs contributes to deviations from parallel evolution. Additionally, likely genomic targets of selection were more parallel between environmentally more similar pairs. In contrast, variation in the magnitude of lake-stream divergence (independent of direction) was better explained by differences in lake-stream gene flow; pairs with greater lake-stream gene flow were less morphologically diverged. Thus, both adaptive and non-adaptive processes work concurrently to generate a continuum of parallel evolution across lake-stream stickleback population pairs.

5.
Ecol Evol ; 5(17): 3769-82, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26380704

RESUMO

This study asks whether the spatial scale of sampling alters structural properties of food webs and whether any differences are attributable to changes in species richness and connectance with scale. Understanding how different aspects of sampling effort affect ecological network structure is important for both fundamental ecological knowledge and the application of network analysis in conservation and management. Using a highly resolved food web for the marine intertidal ecosystem of the Sanak Archipelago in the Eastern Aleutian Islands, Alaska, we assess how commonly studied properties of network structure differ for 281 versions of the food web sampled at five levels of spatial scale representing six orders of magnitude in area spread across the archipelago. Species (S) and link (L) richness both increased by approximately one order of magnitude across the five spatial scales. Links per species (L/S) more than doubled, while connectance (C) decreased by approximately two-thirds. Fourteen commonly studied properties of network structure varied systematically with spatial scale of sampling, some increasing and others decreasing. While ecological network properties varied systematically with sampling extent, analyses using the niche model and a power-law scaling relationship indicate that for many properties, this apparent sensitivity is attributable to the increasing S and decreasing C of webs with increasing spatial scale. As long as effects of S and C are accounted for, areal sampling bias does not have a special impact on our understanding of many aspects of network structure. However, attention does need be paid to some properties such as the fraction of species in loops, which increases more than expected with greater spatial scales of sampling.

6.
Evolution ; 69(9): 2289-302, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26222781

RESUMO

Populations receiving high maladaptive gene flow are expected to experience strong directional selection-because gene flow pulls mean phenotypes away from local fitness peaks. We tested this prediction by means of a large and replicated mark-recapture study of threespine stickleback (Gasterosteus aculeatus) in two stream populations. One of the populations (outlet) experiences high gene flow from the lake population and its morphology is correspondingly poorly adapted. The other population (inlet) experiences very low gene flow from the lake population and its morphology is correspondingly well adapted. Contrary to the above prediction, selection was not stronger in the outlet than in the inlet, a result that forced us to consider potential reasons for why maladaptive gene flow might not increase selection. Of particular interest, we show by means of a simple population genetic model that maladaptive gene flow can-under reasonable conditions-decrease the strength of directional selection. This outcome occurs when immigrants decrease mean fitness in the resident population, which decreases the strength of selection against maladapted phenotypes. We argue that this previously unrecognized effect of gene flow deserves further attention in theoretical and empirical studies.


Assuntos
Fluxo Gênico , Genética Populacional , Seleção Genética , Smegmamorpha/genética , Adaptação Biológica/genética , Migração Animal , Animais , Colúmbia Britânica , Rios , Smegmamorpha/anatomia & histologia
7.
PLoS One ; 8(10): e77457, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24098588

RESUMO

Haminoea japonica is a species of opisthobranch sea slug native to Japan and Korea. Non-native populations have spread unnoticed for decades due to difficulties in the taxonomy of Haminoea species. Haminoea japonica is associated with a schistosome parasite in San Francisco Bay, thus further spread could have consequence to human health and economies. Anecdotal evidence suggests that H. japonica has displaced native species of Haminoea in North America and Europe, becoming locally dominant in estuaries and coastal lagoons. In this paper we study the population genetics of native and non-native populations of H. japonica based on mt-DNA data including newly discovered populations in Italy and France. The conclusions of this study further corroborate a Northeastern Japan origin for the non-native populations and suggest possible independent introductions into North America and Europe. Additionally, the data obtained revealed possible secondary introductions within Japan. Although non-native populations have experienced severe genetic bottlenecks they have colonized different regions with a broad range of water temperatures and other environmental conditions. The environmental tolerance of this species, along with its ability to become dominant in invaded areas and its association with a schistosome parasite, suggest H. japonica could be a dangerous invasive species.


Assuntos
Distribuição Animal , DNA/classificação , Gastrópodes/classificação , Espécies Introduzidas , Filogenia , Adaptação Fisiológica , Animais , DNA/genética , Vetores de Doenças , Estuários , Europa (Continente) , Gastrópodes/genética , Gastrópodes/parasitologia , Saúde Global , Haplótipos , Humanos , Japão , América do Norte , Filogeografia , Schistosoma/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...